A5 BRAKES 6th Edition

Chapter 16 Power Brake, Unit Operation, Diagnosis, and Service <u>**Opening Your Class</u></u></u>**

KEY ELEMENT	EXAMPLES
Introduce Content	This course or class covers operation and service of Automotive
	Brakes. It correlates material to task lists specified by ASE and NATEF.
Motivate Learners	Explain how the knowledge of how something works translates into the ability to use that knowledge to figure why the engine does not
	work correctly and how this saves diagnosis time, which translates into more money.
State the learning	Explain the chapter learning objectives to the students.
objectives for the chapter or course vou are about to	1. State the principles of vacuum and the vacuum booster.
cover and explain this is	2. Discuss how a vacuum brake booster operates.
what they should be able	3. Discuss the vacuum booster leak test and the hydraulic
to do as a result of attending this session or	system leak test.
class.	4. Explain the operation and diagnosis of hydro-boost hydraulic
	brake booster.
Establish the Mood or	Provide a WELCOME, Avoid put downs and bad jokes.
Climate	
Complete Essentials	Restrooms, breaks, registration, tests, etc.
Clarify and Establish	Do a round robin of the class by going around the room and having
Knowledge Base	each student give their backgrounds, years of experience, family,
	hobbies, career goals, or anything they want to share.

ICONS	Ch16 Power Brake OP & Service
	1. SLIDE 1 POWER BRAKE, UNIT OPERATION, DIAGNOSIS, & SERVICE 2. SLIDES 2-3 EXPLAIN OBJECTIVES Check for ADDITIONAL VIDEOS & ANIMATIONS @ http://www.jameshalderman.com/ WEB SITE IS CONSTANTLY UPDATED
DEMO	DEMONSTRATION: SHOW STUDENTS AN EXAMPLE OF A PNEUMATIC POWER BRAKE BOOSTER AND DISCUSS HOW IT WORKS. WHY DO WE NEED A BOOSTER?
	 4. SLIDE 4 EXPLAIN Figure 16-1 Typical vacuum brake booster assembly. The vacuum hose attaches to the intake manifold of the engine. The brake pedal travel sensor is an input sensor for the antilock braking system. 5. SLIDE 5 EXPLAIN Figure 16-2 wide brake pedal allows two foot braking if power assist is lost.
	 6. SLIDES 6-9 EXPLAIN Principles of Vacuum 10. SLIDE 10 EXPLAIN Figure 16-3 Atmospheric pressure varies with altitude. 11. SLIDES 11-14 EXPLAIN Principles of Vacuum
	 15. SLIDE 15 EXPLAIN Figure 16-4 A belt-driven auxiliary vacuum pump. 16. SLIDE 16 EXPLAIN Figure 16-5 An electrically
	 powered vacuum pump. 17. SLIDES 17-19 EXPLAIN Vacuum Booster Theory POWER BOOSTER
	Power Booster Vacuum Supply
DEMO	DEMONSTRATION: SHOW STUDENTS A VACUUM BRAKE BOOSTER ASSEMBLY. ASK STUDENTS TO EXPLAIN HOW IT WORKS.
	DISCUSSION: ASK STUDENTS TO DISCUSS THE NEED FOR A POWER BRAKE ASSIST. WHAT IS THE FUNCTION AND PURPOSE OF A POWER BOOSTER?

ICONS	Ch16 Power Brake OP & Service
DEMO	DEMONSTRATION: SHOW DIAPHRAGM IN A VACUUM BOOSTER, AND DISCUSS HOW IT WORKS TO EQUALIZE THE PRESSURE BETWEEN THE TWO VACUUM BOOSTER CHAMBERS. DISCUSSION: ASK STUDENTS TO DISCUSS THE
QUESTION	REASONS FOR VARIATIONS IN MANIFOLD VACUUM AND EXPLAIN HOW BRAKE BOOSTERS ARE DESIGNED TO WORK WITHIN THIS VARIANCE
	LEAKS IN THE VACUUM LINE TO THE BOOSTER CAN CAUSE DRIVABILITY PROBLEMS WITH THE ENGINE AS WELL AS PROBLEMS WITH THE BRAKES.
	SHOW ANIMATION: BOOSTER OPERATION WWW.MYAUTOMOTIVELAB.COM http://media.pearsoncmg.com/ph/chet/chet_myautomotivelab_2/brakes/auto_animati ons/16/powerbrakebooster_anim/index.html
	HANDS-ON TASK: HAVE STUDENTS CALCULATE AMOUNT OF FORCE CREATED WHEN A POWER- BOOSTER DIAPHRAGM HAS AN ATMOSPHERIC PRESSURE (14.7 PSI) ON ONE SIDE AND AN INTAKE MANIFOLD VACUUM OF 20 IN. HG (10 PSI OF ABSOLUTE PRESSURE), & DIAPHRAGM SIZE OF
	 SQ. IN. (ANSWER: 244.4 POUNDS OF FORCE) 20. SLIDE 20 EXPLAIN Figure 16-6 Vacuum brake boosters operate on the principle of pressure differential
	21. SLIDE 21 EXPLAIN Figure 16-7 charcoal filter traps gasoline vapors that are present in the intake manifold and prevents them from getting into the vacuum chamber of the booster.
DEMO	DEMONSTRATION: SHOW STUDENTS THE CHARCOAL FILTER USED TO TRAP GASOLINE VAPORS TO KEEP THEM FROM ENTERING THE VACUUM BOOSTER. ASK STUDENTS TO DISCUSS THE DAMAGE THAT CAN OCCUR IF THESE VAPORS ARE NOT TRAPPED
	22. SLIDE 22 EXPLAIN Figure 16-8 (a) Many vacuum brake booster check valves are located where the vacuum hose from the engine (vacuum source) attaches to the vacuum booster. (b) one-way valve prevents loss of vacuum when the engine is off. The diaphragm inside

ICONS	Ch16 Power Brake OP & Service
DEMO	allows air to flow in one direction only. DEMONSTRATION: SHOW STUDENTS HOW & WHY THE VACUUM CHECK VALVE RETAINS VACUUM OR THE ABSENCE OF PRESSURE.
	 23. SLIDE 23 EXPLAIN Figure 16–9 Not all check valves are located at the vacuum line to the booster housing connection. This vehicle uses an inline check valve located between the intake manifold of the engine and the vacuum brake booster.
	 24. SLIDES 24-25 EXPLAIN Vacuum Brake Booster Operation 26. SLIDE 26 EXPLAIN Figure 16-10 Cross-sectional
DEMO	view of a typical vacuum brake booster assembly DEMONSTRATION: SHOW OPERATION OF VACUUM BOOSTER IN <u>BRAKE-RELEASED</u> <u>POSITION.</u> ASK STUDENTS TO DESCRIBE POSITION OF AIR & FLOATING CONTROL VALVES & DESCRIBE STATE OF VACUUM IN VACUUM BRAKE BOOSTER.
	27. SLIDE 27 EXPLAIN Figure 16-11 In the release position (brake pedal up), the vacuum is directed to both sides of the diaphragm.
DEMO	 28. SLIDES 28-31 EXPLAIN Vacuum Brake Booster Operation Applied-Position Operation <u>DEMONSTRATION:</u> SHOW OPERATION OF VACUUM BOOSTER AS THE BRAKE PEDAL IS <u>DEPRESSED</u>. ASK STUDENTS TO DESCRIBE THE POSITION OF THE AIR AND FLOATING CONTROL VALVES AND DESCRIBE THE STATE OF VACUUM WITHIN THE VACUUM BRAKE BOOSTER.
	DISCUSSION: ASK STUDENTS TO DISCUSS COMPONENTS & OPERATION OF POWER BRAKE BOOSTER.
	 32. SLIDE 32 EXPLAIN Figure 16-12 Simplified diagram of a vacuum brake booster in the apply position. Notice that the atmospheric valve is open and air pressure is being applied to the diaphragm. 33. SLIDES 33-34 EXPLAIN Vacuum Brake Booster Operation HOLD POSITION 35. SLIDE 35 EXPLAIN Figure 16-13 Cross section of a vacuum brake booster in the hold position with both

ICONS	Ch16 Power Brake OP & Service
DEMO	 vacuum and atmospheric valves closed. Note that the reaction force from the brake fluid pressure is transferred back to the driver as a reaction force to the brake pedal. DEMONSTRATION: SHOW OPERATION OF VACUUM BOOSTER WHEN DESIRED BRAKE-PEDAL FORCE IS REACHED. ASK STUDENTS TO DESCRIBE POSITION OF AIR AND FLOATING CONTROL VALVES AND DESCRIBE STATE OF VACUUM WITHIN THE VACUUM BRAKE BOOSTER. COMPARE THIS TO STATE OF THE VACUUM BOOSTER IN BRAKE-RELEASED POSITION.
	 36. SLIDE 36 EXPLAIN Figure 16-14 Cutaway showing a dual-diaphragm (tandem) vacuum brake booster. 37. SLIDE 37 EXPLAIN Figure 16-15 A typical brake assist system uses a brake pedal travel sensor and a BAS solenoid to apply the brakes during a panic condition.
DEMO	DEMONSTRATION: SHOW EXAMPLE OF A DUAL- DIAPHRAGM OR TANDEM-DIAPHRAGM VACUUM BOOSTER, & DISCUSS HOW THESE DESIGNS INCREASE POWER ASSIST WITHOUT INCREASING SIZE OF VACUUM BOOSTER.
QUESTION	DISCUSSION: ASK STUDENTS TO DISCUSS HOW POWER-ASSISTED BRAKES FUNCTION LIKE CONVENTIONAL BRAKES IN THE EVENT OF A DISRUPTION IN VACUUM
QUESTION	DISCUSSION: ASK STUDENTS TO TALK ABOUT HOW BRAKE ASSIST SYSTEMS (BAS) HELP DRIVERS APPLY BRAKES WITH MAXIMUM FORCE DURING A PANIC STOP. HOW DOES BAS WORK WITH A VEHICLE'S ELECTRONIC STABILITY CONTROL (ESC) SYSTEM TO PROVIDE MAXIMUM BRAKING EFFICIENCY IN EMERGENCY STOPS?
	 38. SLIDE 38 EXPLAIN Figure 16-16 When brake assist function operates, brake force much higher than normal. 39. SLIDES 39-40 EXPLAIN Vacuum Booster Operation Test 41. SLIDE 41 EXPLAIN Vacuum Booster Leak Test
	 42. SLIDES 42-43 EXPLAIN Hydraulic System Leak Test 44. SLIDE 44 EXPLAIN Figure 16-17 Typical adjustable pushrod. This adjustment is critical for proper operation of the braking system. If the pushrod is too long, the

ICONS	Ch16 Power Brake OP & Service
	brakes may be partially applied during driving. If the rod is too short, the brake pedal may have to be depressed farther down before the brakes start to work. <u>HANDS-ON TASK:</u> HAVE STUDENTS PERFORM A PUSHROD CLEARANCE TEST. WHAT PROBLEMS CAN RESULT IF THE PUSHROD IS TOO LONG?
	DEMONSTRATION: SHOW STUDENTS HOW TO PERFORM A <u>VACUUM BOOSTER OPERATION TEST</u> . ASK THEM TO EXPLAIN THE RESULTS.
	ON-VEHICLE NATEF TASK: TEST PEDAL FREE TRAVEL; CHECK POWER ASSIST OPERATION
	ON-VEHICLE NATEF TASK: CHECK VACUUM SUPPLY TO VACUUM-TYPE POWER BOOSTER.
	ON-VEHICLE NATEF TASK: INSPECT VACUUM- TYPE POWER BOOSTER UNIT FOR VACUUM LEAKS; INSPECT THE CHECK VALVE FOR PROPER OPERATION; DETERMINE NECESSARY ACTION
K	HANDS-ON TASK: HAVE STUDENTS PERFORM A HYDRAULIC SYSTEM LEAK TEST
	 45. SLIDE 45 EXPLAIN Figure 16-18 (a) Typical vacuum brake booster pushrod gauging tool. (a) The tool is first placed against the mounting flange of the master cylinder and the depth of the piston determined. (b) Typical vacuum brake booster pushrod gauging tool. (b) The gauge is then turned upside down and used to gauge the pushrod length. Some vacuum brake boosters do not use adjustable pushrods. If found to be the incorrect length, a replacement pushrod of the correct length should be installed ON-VEHICLE NATEF TASK: MEASURE AND ADJUST MASTER CYLINDER PUSHROD LENGTH
	46. SLIDE 46 EXPLAIN Figure 16-19 A holding fixture and a long tool being used to rotate the two halves of a typical vacuum brake booster.

ICONS	Ch16 Power Brake OP & Service
	 47. SLIDE 47 EXPLAIN Figure 16-20 Exploded view of a typical dual-diaphragm vacuum brake booster assembly. <u>HANDS-ON TASK:</u> HAVE STUDENTS REMOVE, DISASSEMBLE, & OVERHAUL VACUUM BRAKE BOOSTER.
	WHEN DISASSEMBLING A VACUUM BOOSTER YOU FIND BRAKE FLUID INSIDE THIS WOULD INDICATE A LEAK IN THE REAR SEAL OF MASTER CYLINDER
	ANIMATION: HYDRO-BOOST OPERATION WWW.MYAUTOMOTIVELAB.COM HTTP://MEDIA.PEARSONCMG.COM/PH/CHET/CHET_MYAUTOMOTIVELAB_2/BRAKES/AUTO_ANIMATI ONS/CH16_FIG16_23/INDEX.HTML
	 48. SLIDE 48 EXPLAIN Hydro-Boost Hydraulic Brake Booster 49. SLIDE 49 EXPLAIN Figure 16-21 Hydro-Boost unit attaches between the bulkhead and the master cylinder and is powered by the power steering pump. 50. SLIDE 50 EXPLAIN Figure 16-22 Exploded view of the Hydro-Boost unit
DEMO	DEMONSTRATION: SHOW STUDENTS AN EXAMPLE OF A HYDRO-BOOST SYSTEM. ASK THEM TO TALK ABOUT THE TYPES OF VEHICLES IN WHICH HYDRO-BOOST MAY BE PREFERABLE TO USING A VACUUM BOOSTER.
	DISCUSSION: ASK STUDENTS TO DISCUSS HOW A HYDRO-BOOST SYSTEM OPERATES. WHAT HAPPENS IN EVENT OF A HYDRAULIC SYSTEM FAILURE?
	51. SLIDE 51 EXPLAIN Figure 16-23 Hydro-Boost hydraulic booster in the unapplied position
	DISCUSSION: HAVE STUDENTS TALK ABOUT HOW AN ACCUMULATOR WORKS. HAVE THEM TALK ABOUT THE POSSIBLE PROBLEMS THAT AN ACCUMULATOR CAN DEVELOP

ICONS	Ch16 Power Brake OP & Service
	SAFETY TIP: DO NOT EVER TRY TO TAKE AN ACCUMULATOR APART. ACCUMULATOR SPRING IS UNDER EXTREME PRESSURE.
	 52. SLIDE 52 EXPLAIN Figure 16-24 A Hydro-Boost hydraulic booster as the brakes are applied. 53. SLIDE 53 EXPLAIN Figure 16-25 A Hydro-Boost hydraulic booster in the holding position. 54. SLIDES 54-55 EXPLAIN Hydro-Boost Hydraulic
	Brake Booster DISCUSSION: ASK STUDENTS TO TALK ABOUT THE POSSIBLE CAUSES OF SLOW BRAKE-PEDAL RETURN, GRABBY BRAKES, & BOOSTER CHATTER IN A HYDRO-BOOST SYSTEM.
	 56. SLIDE 56 EXPLAIN Figure 16-26 A typical Hydro-Boost hydraulic line arrangement showing the pump, steering gear, and brake booster assembly. 57. SLIDE 57 EXPLAIN Figure 16-27 Pressure and flow analyzer installation to check the power steering pump output. 58. SLIDE 58 EXPLAIN Figure 16-28 The accumulator should be able to hold pressure and feel tight when hand force is used to try to move it.
Task	59. SLIDE 59 EXPLAIN Hydro-Boost Function Test <u>HANDS-ON TASK:</u> HAVE STUDENTS PERFORM A VISUAL INSPECTION OF A HYDRO-BOOST SYSTEM. THEN USE A POWER STEERING PUMP TESTER TO CHECK FOR PROPER PRESSURE AND VOLUME EROM DOWED STEEDING DUMP
	OPTIONAL HANDS-ON TASK: HAVE STUDENTS REMOVE, DISASSEMBLE, & OVERHAUL A HYDRO- BOOST HYDRAULIC BRAKE BOOSTER. GRADE STUDENTS ON FOLLOWING PROPER PROCEDURES AND ACHIEVING A SATISFACTORY RESULT. DEMONSTRATION: SHOW STUDENTS HOW TO DO A HYDRO-BOOST FUNCTION TEST. SELECT A
DEMO	STUDENT TO EXPLAIN THE RESULTS <u>DEMONSTRATION:</u> SHOW STUDENTS THE CHATTER YOU WILL GET IN THE BRAKES WHEN THE BELT SLIPS ON THE POWER STEERING PUMP

ICONS	Ch16 Power Brake OP & Service
	HANDS-ON TASK: HAVE STUDENTS PERFORM A HYDRO-BOOST ACCUMULATOR TEST. DOES THE ACCUMULATOR MOVE OR WIGGLE? ASK STUDENTS TO INTERPRET THE RESULTS
	ON-VEHICLE NATEF TASK: INSPECT AND TEST HYDRO-BOOST SYSTEM FOR LEAKS AND PROPER OPERATION.
	60. SLIDES 60-63 EXPLAIN SUMMARY
<mark>───Ĭ</mark>	SEARCH INTERNET: HAVE STUDENTS USE INTERNET TO RESEARCH HOW BRAKE ASSIST PLUS (BAS PLUS) SYSTEM FROM MERCEDES-BENZ WORKS TO INCREASE BRAKING PRESSURE IN EMERGENCIES.