Automotive Electrical & Engine Performance 8/E Chapter 41 Vehicle Emission Standards & Testing

Opening Your Class

KEY ELEMENT	EXAMPLES
Introduce Content	This Automotive Electrical & Engine Performance 8th edition provides complete coverage of automotive areas pertaining vehicle electrical systems and engine performance. It correlates material to task lists specified by ASE and ASEEducation (NATEF) and emphasizes a problem-solving approach. Chapter features include Tech Tips, Frequently Asked Questions, Case Studies, Videos, and Animations that are listed in this Lesson Plan. This Lesson Plan also references ASEEducation (NATEF) Task Sheets available from Jim's web site.
Motivate Learners	Explain how the knowledge of how something works translates into the ability to use that knowledge to figure why the engine does not work correctly and how this saves diagnosis time, which translates into more money.
State the learning objectives for the chapter or course you are about to cover and explain this is what they should be able to do as a result of attending this session or class.	 Explain learning objectives to students as listed below: Discuss emissions standards. Identify the reasons why excessive amounts of HC, CO, and NOx exhaust emissions are created. Diagnose driveability and emissions problems resulting from malfunctions of interrelated systems. Describe how to test for various emissions products. This chapter will help you prepare for ASE A8 certification test content area "D" (Emissions Control Systems Diagnosis and Repair) and ASE L1 certification test content area "F" (I/M Failure Diagnosis).
Establish the Mood or Climate	Provide a WELCOME, Avoid put downs and bad jokes.
Complete Essentials	Restrooms, breaks, registration, tests, etc.
Clarify and Establish Knowledge Base	Do a round robin of the class by going around the room and having each student give their backgrounds, years of experience, family, hobbies, career goals, or anything they want to share.

NOTE: This lesson plan is based on Automotive Electrical & Engine Performance 8th Edition Chapter Images found on Jim's web site @ <u>www.jameshalderman.com</u> DOWNLOAD Chapter 41 Chapter Images: From http://www.jameshalderman.com/books_a8.html#anchor2

ICONS	Ch41 Vehicle Emission Standards & Testing
	1. SLIDE 1 CH41 VEHICLE EMISSION STANDARDS & TESTING
2)))))	Check for ADDITIONAL VIDEOS & ANIMATIONS @ <u>http://www.jameshalderman.com/</u>
السما المعما	WEB SITE IS CONSTANTLY UPDATED
	<u>Videos</u>
	At the beginning of this class, you can download the crossword puzzle & Word Search from Jim's web site to familiarize your class with terms in this chapter & then discuss them, see below:
	HTTP://WWW.JAMESHALDERMAN.COM/BOOKS_A8.H
	TML#ANCHOR2 DOWNLOAD
	CROSSWORD PUZZLE (MICROSOFT WORD) (PDF) WORD SEARCH PUZZLE (MICROSOFT WORD) (PDF
	 SLIDE 2 EXPLAIN FIGURE-1 air entering the engine consists of mostly nitrogen (78%) with about 21% oxygen and about 1% other gases.
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT EMISSIONS. WHAT ARE THEIR IMPRESSIONS OF EMISSIONS STANDARDS?
	3. SLIDE 3 EXPLAIN FIGURE 41–2 Hydrocarbons can include many combinations of hydrogen and carbon.
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT FEDERAL EMISSIONS STANDARDS. EXPLAIN THAT EMISSION CONTROL SYSTEMS (ECS) LABEL
	IS UNDER THE HOOD OF EVERY VEHICLE PRODUCED FOR SALE IN THE US & INCLUDES INFORMATION ABOUT EMISSIONS SYSTEMS INSTALLED WHEN IT WAS MANUFACTURED. WHAT DOES HIGHER TIER NUMBER MEAN? IF A VEHICLE IS DAMAGED IN A
	COLLISION, THE ECS LABEL MAY NOT HAVE BEEN REPLACED DURING BODY REPAIRS.

ICONS	Ch41 Vehicle Emission Standards & Testing
	IF LABEL IS MISSING, THE VIN MUST BE
	USED TO DETERMINE YEAR. A
	REPLACEMENT ECS LABEL CAN BE
	OBTAINED FROM DEALER USING THE VIN.
	DISCUSSION: HAVE THE STUDENTS DISCUSS <u>3</u>
	MAIN
OUESTION	POLLUTANTS FOR WHICH VEHICLES ARE
gocorron	TESTED. HOW ARE THE MAIN POLLUTANTS
	PRODUCED? CHART 41-1 & 2
	DISCUSSION: DISCUSS <u>HYDROCARBONS</u> ,
	CARBON MONOXIDE, & OXIDES OF
QUESTION	NITROGEN. WHAT ARE ACCEPTABLE LEVELS OF
	EACH POLLUTANT? WHAT ARE UNITS OF
	MEASUREMENT FOR PROPERLY TUNED AND
	RUNNING ENGINE? WHAT IS MEANT BY AIR
	POLLUTION SCORE (BIN)? CHARTS 41-1 & 2
	DISCUSSION: BRIEFLY REVIEW AND DISCUSS
	THE ROLE OF <u>CATALYTIC CONVERTERS</u> IN
QUESTION	OXIDIZING HYDROGEN AND CARBON WHILE
	REDUCING OXIDES OF NITROGEN. WHY WOULD A VEHICLE WITH A CATALYTIC
	CONVERTER THAT IS NOT FUNCTIONING FAIL AN
	EMISSIONS TEST?
	4. SLIDE 4 EXPLAIN FIGURE 41–3 Carbon dioxide has
	two oxygen atoms attached to one carbon atom and is a
	stable molecule
	5. SLIDE 5 EXPLAIN FIGURE 41–4 NO and NO2 shown
	together are referred to as NOx.
	DISCUSSION: DISCUSS DIFFERENCES BETWEEN
	TESTING VEHICLE'S EMISSIONS AT DIFFERENT IDLE SPEEDS VS. LOAD TEST ON
QUESTION	DYNAMOMETER. HOW DO EMISSIONS CHANGE
	AS VEHICLE LOAD INCREASES? DISCUSS TERM
	LOADED-MODE TESTING. STUDENTS SHOULD
	UNDERSTAND THAT LOADED MODE TESTING
	REQUIRES VEHICLE TO BE ON DYNAMOMETER.
	HOW DOES DYNAMOMETER SIMULATE REAL-
	WORLD DRIVING CONDITIONS IN A TESTING
	ENVIRONMENT?

ICONS	Ch41 Vehicle Emission Standards & Testing
?	DISCUSS FREQUENTLY ASKED QUESTION: WHY IS STEAM SEEN FROM THE TAILPIPE WHEN COLD OUTSIDE, BUT NOT ALWAYS? Steam is water vapor and is invisible. However, when an engine is cold, the water vapor created by combustion partially condenses into small droplets of water that are visible as "steam" from the tailpipe of vehicle. After exhaust system has been heated, the water vapor no longer condenses in the exhaust system, so it is not visible after the engine is warm. • SEE FIGURE 41–5.
	6. SLIDE 6 EXPLAIN FIGURE 41–5 chart showing that about 13% of the exhaust emissions is water (H2O) in the form of steam.
DEMO	DISCUSSION: DISCUSS ABBREVIATIONS HC, CO, AND NOX AND WHAT THESE COMPOUNDS ARE. HOW ARE <u>HC, CO & NOX</u> FORMED IN THE COMBUSTION CHAMBER? DEMONSTRATION: USING <u>5-GAS EXHAUST</u> ANALYZER, MEASURE HC, CO, AND NOX EMISSIONS ON A VEHICLE SIMULATING A TWO- SPEED IDLE TEST. USE THE SAME VEHICLE AND MEASURE AGAIN, PERFORMING AN ASM TEST TO
	SHOW STUDENTS DIFFERENCE IN EMISSIONS. DISCUSSION: HAVE THE STUDENTS DISCUSS HOW AND WHY EMISSIONS SUCH AS NOx INCREASE DURING <u>ASM</u> TEST COMPARED TO <u>TSI</u> TESTS. WHY DOES NO _x INCREASE AS A RESULT OF A LOADED ENGINE? 7. SLIDE 7 EXPLAIN FIGURE 41–6 Exhaust emissions
	are very complex. When air-fuel mixture becomes richer, some exhaust emissions are reduced, while others increase. DEMONSTRATION: WHILE PERFORMING AN EMISSIONS TEST, DISCONNECT SPARK PLUG WIRE
	FOR SHORT TIME. SHOW THE STUDENTS THE INCREASE EMISSIONS CAUSED BY MISFIRING CYLINDER.

ICONS	Ch41 Vehicle Emission Standards & Testing
DEMO	DEMONSTRATION: DISCONNECT FUEL PRESSURE REGULATOR VACUUM HOSE OR ECT SENSOR TO SHOW HOW CARBON MONOXIDE (CO) READINGS CAN BE INCREASED DURING AN EMISSIONS TEST.
DEMO	DEMONSTRATION: DEMONSTRATE USING AN INFRARED THERMOMETER WHAT HAPPENS TO THE TEMPERATURE OF CATALYTIC CONVERTER WHEN A MISFIRE OR RICH MIXTURE IS CREATED.
DEMO	DEMONSTRATION: BEFORE- AND AFTER CONVERTER EMISSION READINGS CAN BE OBTAINED BY REMOVING OXYGEN SENSOR AND INSERTING 5-GAS ANALYZER PROBE INTO THE
	SENSOR BOSS. LEAVE SENSOR CONNECTED WHILE OPERATING THE ENGINE AND QUICKLY RECORD READINGS. REMOVE ANALYZER AND INSERT IT INTO THE TAILPIPE AFTER CONVERTER TO ILLUSTRATE OPERATION OF CATALYTIC CONVERTER.
	DISCUSSION: DISCUSS THE DIFFERENCES BETWEEN <u>RICH & LEAN EXHAUST</u> . WHAT INDICATES THAT ENGINE IS OPERATING CORRECTLY?
	8. SLIDE 8 EXPLAIN FIGURE 41–7 image on left shows exhaust gases existing in an engine without a catalytic converter with rich exhaust being toward left of the vertical line and lean exhaust to the right of the line. The image on right shows the exhaust after it has been treated by the catalytic converter.
	EXPLAIN TECH TIP: How to Find a Leak in the
3	Exhaust System: A hole in the exhaust system can dilute the exhaust gases with additional O2. • SEE FIGURE 41–8. This additional O2 in exhaust can lead service technician to believe that air-fuel
	mixture is too lean. To help identify an exhaust
	leak, perform an exhaust analysis at idle and at
	2,500 RPM (fast idle) and compare with following:
	• If O2 is high at idle and at 2,500 RPM, the mixture is lean at both idle and at 2,500 RPM.

ICONS	Ch41 Vehicle Emission Standards & Testing
	 If O2 is low at idle and high at 2,500 RPM, this usually means that vehicle is equipped with a working AIR pump. If O2 is high at idle, but okay at 2,500 RPM, a hole in exhaust or a small vacuum leak that is "covered up" at higher speed is indicated.
	9. SLIDE 9 EXPLAIN FIGURE 41–8 A hole in the exhaust system can cause outside air (containing O2) to be drawn into the exhaust system. This extra O2 can be confusing to a service technician because the extra O2 in exhaust stream could be misinterpreted as a too-lean air–fuel mixture.
	DISCUSS CASE STUDY: O2S SHOWS RICH, BUT
	PULSE WIDTH IS LOW
	A TECHNICIAN IS ATTEMPTING TO SOLVE A
	DRIVEABILITY PROBLEM. PCM DOES NOT
	INDICATE ANY DTCS. A CHECK OF OXYGEN
	SENSOR VOLTAGE INDICATES A HIGHER-
	THAN-NORMAL READING ALMOST ALL TIME.
	THE PULSE WIDTH TO THE PORT INJECTORS
	IS LOWER THAN NORMAL. LOWER-THAN-
	NORMAL PULSE WIDTH INDICATES THAT PCM
	IS ATTEMPTING TO REDUCE FUEL FLOW INTO
	ENGINE BY DECREASING THE AMOUNT OF ON-
	TIME FOR ALL INJECTORS. WHAT COULD
	CAUSE A RICH MIXTURE IF THE INJECTORS
	ARE BEING COMMANDED TO DELIVER A LEAN
	MIXTURE? FINALLY, TECHNICIAN SHUTS OFF
	THE ENGINE AND TAKES CAREFUL LOOK AT
	THE ENTIRE FUEL-INJECTION SYSTEM. WHEN
	VACUUM HOSE IS REMOVED FROM THE FUEL-
	PRESSURE REGULATOR, FUEL IS FOUND
	DRIPPING FROM THE VACUUM HOSE. THE
	PROBLEM IS A DEFECTIVE FUEL-PRESSURE
	REGULATOR THAT IS ALLOWING AN
	UNCONTROLLED AMOUNT OF FUEL TO BE
	DRAWN BY INTAKE MANIFOLD VACUUM INTO
	CYLINDERS. WHILE PCM IS TRYING TO

ICONS	Ch41 Vehicle Emission Standards & Testing
	EGR VALVE, WHICH WAS INSPECTED
	AND THE EGR PASSAGES CLEANED
	AFTER ALL THE ITEMS WERE COMPLETED,
	VEHICLE WAS RETURNED TO THE INSPECTION
	STATION WHERE THE VEHICLE AGAIN FAILED
	FOR EXCESSIVE NOX EMISSIONS (BETTER,
	BUT STILL OVER MAXIMUM ALLOWABLE
	LIMIT). AFTER ADDITIONAL HOURS OF
	TROUBLESHOOTING, THE TECHNICIAN
	DECIDED TO GO BACK TO BASICS AND START
	OVER AGAIN. CHECK OF THE VEHICLE
	HISTORY WITH THE OWNER INDICATED THAT
	THE ONLY PREVIOUS WORK PERFORMED ON
	THE ENGINE WAS A REPLACEMENT TIMING
	BELT OVER A YEAR BEFORE. THE TECHNICIAN
	DISCOVERED THAT THE EXHAUST CAM
	TIMING WAS RETARDED TWO TEETH,
	RESULTING IN LATE CLOSING OF THE
	EXHAUST VALVE. THE PROPER EXHAUST
	VALVE TIMING RESULTED IN A SLIGHT
	AMOUNT OF EXHAUST BEING RETAINED IN
	THE CYLINDER. THIS EXTRA EXHAUST
	HELPED REDUCE NOX EMISSIONS. AFTER
	REPOSITIONING THE TIMING BELT, THE
	VEHICLE PASSED EMISSIONS TEST WELL
	WITHIN THE LIMITS.
	SUMMARY:
	COMPLAINT—CUSTOMER STATED THAT
	THE VEHICLE FAILED AN EMISSION TEST
	DUE TO EXCESSIVE NOX EXHAUST
	EMISSIONS.
	CAUSE—EXHAUST CAM WAS
	DISCOVERED TO BE RETARDED BY TWO
	TEETH BECAUSE OF THE TIMING BELT
	BEING INCORRECTLY INSTALLED
	DURING A PREVIOUS REPAIR.

ICONS	Ch41 Vehicle Emission Standards & Testing
	CORRECTION—TIMING BELT WAS
	PROPERLY ALIGNED, AND THE VEHICLE
	PASSED THE EMISSION TEST.
	EXPLAIN TECH TIP: Your Nose Knows
3	Using nose, a technician can often identify a major
	problem without having to connect the vehicle to
	an exhaust analyzer. For example:
	Strong smell of exhaust is due to excessive
	unburned HC emissions. Look for an ignition
	system fault that could prevent the proper
	burning of the fuel.
	 If your eyes start to burn or water, suspect
	excessive NOx emissions. NOx combine with
	the moisture in the eyes to form a mild
	solution of nitric acid. The acid formation
	causes the eyes to burn and water. Excessive NOx exhaust emissions can be caused by a
	lack of proper amount of exhaust gas
	recirculation (EGR) or a variable valve timing
	issue (This is usually noticed above idle on
	most vehicles.)
	• Dizzy feeling or headache. This is commonly
	caused by excessive CO exhaust emissions.
	Get into fresh air as soon as possible. A
	probable cause of high levels of CO is an
	excessively rich air-fuel mixture.
	10. SLIDE 10 EXPLAIN FIGURE 41–9 A vehicle
	emission control information (VECI) sticker for a vehicle
	showing that meets Tier 3, Bin 1 (T2B3) EPA rating and California ULEV125 standard.
	11. SLIDE 11 EXPLAIN FIGURE 41–10 This label on a
	Toyota Camry hybrid shows relative smog-producing
	emissions, but this does not include CO2, which may
	increase global warming.
	12. SLIDE 12 EXPLAIN FIGURE 41–11 A partial stream
	sampling exhaust probe being used to measure exhaust
	gases in parts per million (PPM) or percent (%).
- /Y	HANDS-ON TASK: PREPARE A VEHICLE TO
	FAIL EMISSIONS TEST. CLOSE ELECTRODES ON
-0-0	A SPARK PLUG. STUDENTS OPERATE VEHICLE FOR

ICONS	Ch41 Vehicle Emission Standards & Testing
	AN ASM EMISSIONS TEST. ASK STUDENTS TO
	EXPLAIN FAILURE AND LIST CAUSES FOR THE
	HIGH EMISSIONS. GRADE THEM ON THEIR ABILITY
	TO IDENTIFY IGNITION PROBLEMS AS CAUSE OF
	HIGH HC
	DEMONSTRATION: SIMULATE A LEAN
DEMO	CONDITION WHILE ANALYZING A VEHICLE'S
-0-0	EMISSIONS BY DISCONNECTING ONE OR TWO INJECTORS. SHOW DROP IN CARBON MONOXIDE
	AND INCREASE IN OXYGEN.
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT
	THE EMISSION READINGS OF THE VEHICLE IN
	PREVIOUS DEMO. WHY IS INCREASE IN OXYGEN &
QUESTION	CORRESPONDING DECREASE IN CARBON
	MONOXIDE A RESULT OF LEAN CONDITION?
	DISCUSSION: HAVE THE STUDENTS DISCUSS
	HOW AN EXHAUST LEAK CAN CAUSE A FALSE
OUESTION	LEAN CONDITION. HOW ARE LOW PRESSURE
doco i loa	PULSES IN EXHAUST SYSTEM CAUSED BY THE 4-
	STROKE CYCLE DRAWING OUTSIDE AIR PAST THE
	OXYGEN SENSOR?
- 14	ON-VEHICLE ASEEDUCATION TASK: PREPARE
	4 OR 5 GAS ANALYZER ; INSPECT AND PREPARE
-0-0	VEHICLE FOR TEST, AND OBTAIN EXHAUST
Education Foundation	READINGS; INTERPRET READINGS, AND
	DETERMINE NECESSARY ACTION.
D /Y	DEMONSTRATION: ADVANCE IGNITION TIMING
DEMO	AND/OR DISCONNECT EGR SYSTEM ON A VEHICLE PRIOR TO CONDUCTING AN ASM EMISSIONS TEST.
-0-0	SHOW STUDENTS INCREASE IN NOX.
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT
	THE INCREASE IN NOX IN PREVIOUS
QUESTION	DEMONSTRATION. WHAT ARE THE POTENTIAL CAUSES?
D/Y	HANDS-ON TASK: HAVE STUDENTS CORRECT
- AL	THE CONDITION THAT CAUSED INCREASE IN
-0-0	NOXIN VEHICLE USED IN DEMONSTRATION &
	RETEST VEHICLE TO SEE CHANGES.