Automotive Electrical & Engine Performance 8/E Chapter 4 Electrical Circuits & Ohm's Law

Opening Your Class

KEY ELEMENT	EXAMPLES
Introduce Content	This Automotive Electrical & Engine Performance 8th edition
	provides complete coverage of automotive areas pertaining
	vehicle electrical systems and engine performance. It correlates
	material to task lists specified by ASE and ASEEducation (NATEF)
	and emphasizes a problem-solving approach. Chapter features
	include Tech Tips, Frequently Asked Questions, Case Studies,
	Videos, and Animations that are listed in this Lesson Plan. This
	Lesson Plan also references ASEEducation (NATEF) Task Sheets
	available from Jim's web site.
Motivate Learners	Explain how the knowledge of how something works translates into
	the ability to use that knowledge to figure why the engine does not
	work correctly and how this saves diagnosis time, which translates
	into more money.
State the learning	Explain the chapter learning objectives to the students.
or course you are about to	1. Identify the parts of a complete circuit.
cover and explain this is	2. Describe the characteristics of different types of circuits.
what they should be able	3. Explain Ohm's law as it applies to automotive circuits.
to do as a result of attending this session or	4. Explain Watt's law as it applies to automotive circuits.
class.	This chapter will help you prepare for the ASE
	Electrical/Electronic Systems (A6) certification test content
	area "A" (General Electrical/Electronic
Establish the Mood or	Provide a WELCOME, Avoid put downs and bad jokes.
Climate	
Complete Essentials	Restrooms, breaks, registration, tests, etc.
Clarify and Establish	Do a round robin of the class by going around the room and having
Knowledge Base	each student give their backgrounds, years of experience, family,
	hobbies, career goals, or anything they want to share.

NOTE: This lesson plan is based on Automotive Electrical & Engine Performance 8th Edition Chapter Images found on Jim's web site @ <u>www.jameshalderman.com</u> DOWNLOAD Chapter 04 Chapter Images: From http://www.jameshalderman.com/books_a8.html#anchor2

ICONS	Ch04 ELECTRICAL CIRCUITS/OHM'S LAW
	1. SLIDE 1 CH4 ELECTRICAL CIRCUITS/OHM'S LAW
	Check for ADDITIONAL VIDEOS & ANIMATIONS @ <u>http://www.jameshalderman.com/</u> WEB SITE IS CONSTANTLY UPDATED
	<u>Videos</u>
	At the beginning of this class, you can download the crossword puzzle & Word Search from Jim's web site to familiarize your class with terms in this chapter & then discuss them, see below:
	HTTP://WWW.JAMESHALDERMAN.COM/BOOKS_A8.H
J =	TML#ANCHOR2 DOWNLOAD
·	
	 2. SLIDE 2 EXPLAIN Figure 4-1 All complete circuits must have a power source, a power path, protection (fuse), an electrical load (light bulb in this case), and a return path back to the power source.
DEMO	DEMONSTRATION: DEMO BASIC ELECTRICAL CIRCUIT ON <u>TRAINER. SHOW</u> (FIGURE 4-1)WHAT HAPPENS WHEN CIRCUIT IS SHORTED TO GROUND
₽₩ Ĭ	TRAINER TASK: ALLOW STUDENTS TO BLOW FUSE BY CREATING A SHORT CIRCUIT, OBSERVING WHAT IT TAKES TO CREATE SHORT CIRCUIT
	3. SLIDE 3 EXPLAIN Figure 4-2 return path back to the battery can be any electrical conductor, such as a copper wire or the metal frame or body of the vehicle.
n	4. SLIDE 4 EXPLAIN Figure 4-3 electrical switch opens the circuit and no current flows. The switch could also be on the return (ground) path wire.
	5. SLIDE 5 EXPLAIN Figure 4-4 Examples of common causes of open circuits. Some are often difficult to find.

ICONS	Ch04 ELECTRICAL CIRCUITS/OHM'S LAW
	 6. SLIDE 6 EXPLAIN Figure 4-5 short circuit permits electrical current to bypass some or all of resistance in circuit. DISCUSSION: Ask students to discuss ground path. Why doesn't a separate ground wire have to be run from the battery to each electrical load? Ask students to discuss how and why a short-to-voltage occurs. What is the reason that a short-to-voltage occurs.
3	voltage occurs. What is the reason that a short to voltage may or may not blow a fuse? <u>EXPLAIN TECH TIP:</u> <i>Open" Is a Four-Letter Word</i> An open in a circuit breaks the path of current flow. The open can be any break in the power side, load, or ground side of a circuit. A switch is often used to close and open a circuit to turn it on and off. Just remember.
	Open = no current flow
	Closed = current flow
	Trying to locate an open circuit in a vehicle is often
	difficult and may cause you to use other four-letter words, such as "HELP"!
	7. SLIDE 7 EXPLAIN Figure 4-6 A fuse or circuit breaker opens the circuit to prevent possible overheating damage in the event of a short circuit.
Π	8. SLIDE 8 EXPLAIN Figure 4-7 short-to-ground affects power side of circuit. Current flows directly to ground return, bypassing some or all of electrical loads in the circuit. There is no current in circuit past the short. A short-to ground will also cause fuse to blow
	DISCUSS CASE STUDY: THE SHORT-TO-
	VOLTAGE STORY: a technician was working on
	a Chevrolet pickup truck with the following
	unusual electrical problems.
	1. When brake pedal was depressed, dash
	light and side marker lights would light.
	2. Turn signals caused all lights to blink and
	the fuel gauge needle to bounce up and
	down.
	3. When brake lights were on, the front
	parking lights also came on.
	Note: using a single-filament bulb (such as a

ICONS	Ch04 ELECTRICAL CIRCUITS/OHM'S LAW
	#1156) in the place of a dual-filament bulb
	(such as a #1157) could also cause many of
	these same problems. Because most of the
	trouble occurred when the brake pedal was
	depressed, the technician decided to trace all
	the wires in the brake light circuit. The
	technician discovered the problem near the
	exhaust system. Small hole in tailpipe (after
	the muffler) directed hot exhaust gases to
	wiring harness containing all of wires for
	circuits at rear of the truck. The heat had
	melted the insulation and caused most of the
	wires to touch. Whenever one circuit was
	activated (such as when the brake pedal was
	applied), the current had a complete path to
	several other circuits. A fuse did not blow
	because there was enough resistance in the
	circuits being energized, so the current (in
	amperes) was too low to blow any fuses.
	Summary:
	Complaint—customer stated that the
	truck lights were doing strange things
	when the brake pedal was depressed.
	Cause—melted wires caused by a small
	hole in the exhaust was found during a
	visual inspection.
	Correction—performing a wire repair and
	fixing the exhaust leak corrected the
	Customer concern.
↓	higher than-normal resistance on various
	components in an automotive electrical system.
	What can cause high resistance?
	HOMEWORK: Research on Internet opportunities
	for technicians who specialize in electrical systems
	questions: What types of work are available? What
	are the training and job qualification requirements?

ICONS	Ch04 ELECTRICAL CIRCUITS/OHM'S LAW
	Ch04 ELECTRICAL CIRCUITS/OHM'S LAW What is salary range for technician who is trained in automotive electrical systems? DEMONSTRATION: Use an inductive ammeter or charging system tester to show that <i>amount of</i> <i>current leaving battery on positive is returned on</i> <i>negative side.</i> EXPLAIN TECH TIP: Think of a Waterwheel A beginner technician cleaned the positive terminal of the battery when the starter was cranking the engine slowly. When questioned by the shop foreman as to why only the positive post had been cleaned, the technician responded that the negative terminal was "only a ground." The foreman reminded technician that current, in amperes, is constant throughout a series circuit (such as the cranking motor circuit). If 200 amperes leave the positive post of the battery, then 200 amperes must return to the battery through negative post. The technician could not understand how electricity can do work (crank an engine), yet return same amount of current, in amperes, as left the battery. The shop foreman explained that even though the current is constant throughout the circuit, the voltage (electrical pressure or potential) drops to zero in the circuit. Foreman drew a waterwheel. • SEE FIGURE 4–8. As water drops from a higher level to a lower level, high potential energy (or voltage) is used to turn waterwheel and results in low potential energy (or lower voltage). The same
	amount of water (or amperes) reaches the pond
	waterwheel. As current (amperes) flows through a
	conductor, it performs work in the circuit (turns the waterwheel) while its voltage (notential) drops
	 9. SLIDE 9 EXPLAIN FIGURE 4-8 Electrical flow through a circuit is similar to water flowing over a waterwheel. 10. SLIDE 10 EXPLAIN Figure 4-9 To calculate one unit of electricity when the other two are known, simply use your finger and cover the unit you do not know. For example, if both voltage (E) and resistance (R) are known, cover the letter I (amperes). Notice that the letter

ICONS	Ch04 ELECTRICAL CIRCUITS/OHM'S LAW
	E is above the letter R, so divide the resistor's value into the voltage to determine the current in the circuit. DISCUSSION: Ask students to talk about Ohm's law. What is application of Ohm's law in automotive wiring circuits? Ohm's Law, Current (View) (Download) Ohm's Law, Resistance (View) (Download) Ohm's Law, Volt (View) (Download)
	Complete <u>Task Sheet</u> on Electrical Circuits
Education Foundation	STUDENTS COMPLETE ASEEDUCATION TASK SHEET ON OHM'S LAW: A2. DEMONSTRATE KNOWLEDGE OF ELECTRICAL/ELECTRONIC SERIES, PARALLEL, AND SERIES-PARALLEL CIRCUITS USING PRINCIPLES OF ELECTRICITY (OHM'S LAW).
₽₩ Ĭ	Students can complete <u>NATEF Task Sheet on Ohm's</u> Law: Diagnose electrical/electronic integrity of series, parallel & series-parallel circuits using principles of electricity (Ohm's Law). (P-1)
	11. SLIDE 11 EXPLAIN Figure 4-10 This closed circuit includes a power source, power-side wire, circuit protection (fuse), resistance (bulb), and return path wire. In this circuit, if battery has 12 volts & electrical load has 4 ohms, then current through circuit is 4 amperes.
L	DISCUSS CHART 4-1 OHM'S LAW RELATIONSHIP WITH 3 UNITS OF ELECTRICITY.
	DISCUSSION: Ask students to compare Ohm's & Watt's laws. Which law can be used to determine the diameter of wire needed for a circuit?
	 12. SLIDE 12 EXPLAIN Figure 4-11 Calculate 1 unit when other 2 are known, cover unknown unit to see what unit needs to be divided or multiplied to arrive at solution. 13. SLIDE 13 EXPLAIN Figure 4-12 "Magic circle" of most formulas for problems involving Ohm's law. Each quarter of "pie" has formulas used to solve for a particular unknown value: current (amperes), in upper right segment; resistance (ohms), in lower right; voltage (E), in lower left; and power (watts), in upper left.

ICONS	Ch04 ELECTRICAL CIRCUITS/OHM'S LAW
	EXPLAIN TECH TIP: Wattage Increases by the Square of the Voltage: The brightness of a lightbulb, such as an automotive headlight or courtesy light, depends on the number of watts available. The watt is the unit by which electrical power is measured. If the battery voltage drops, even slightly, the light becomes noticeably dimmer. The formula for calculating power (P) in watts is P = IE. This can also be expressed as Watts = Amps * Volts. According to Ohm's law, I = E/R. Therefore, E/R can be substituted for I in the previous formula, resulting in I=E/R. A small change in the voltage (E) has a big effect on the total brightness of the bulb. (Remember, household lightbulbs are sold according to their wattage.) Therefore, if the voltage to an automotive bulb is reduced, such as by a poor electrical Connection, brightness of the bulb is greatly affected. A poor electrical ground
	reduced and the bulb's brightness is reduced. DISCUSSION: ASK STUDENTS TO DISCUSS GROUND PATH. WHY DOESN'T A SEPARATE GROUND WIRE HAVE TO BE RUN FROM THE BATTERY TO EACH ELECTRICAL LOAD? ASK STUDENTS TO DISCUSS HOW AND WHY A SHORT-TO-VOLTAGE OCCURS. WHAT IS THE REASON THAT A SHORT-TO- VOLTAGE MAY OR MAY NOT BLOW A FUSE?
DEMO	DEMONSTRATION: USE AN INDUCTIVE AMMETER OR CHARGING SYSTEM TESTER TO SHOW THAT AMOUNT OF CURRENT LEAVING BATTERY ON POSITIVE IS RETURNED ON NEGATIVE SIDE. DISCUSSION: ASK STUDENTS TO TALK ABOUT OHM'S LAW. WHAT IS APPLICATION OF OHM'S LAW IN AUTOMOTIVE WIRING CIRCUITS?