Automotive Electrical & Engine Performance 8/E Chapter 35 OXYGEN SESNORS

Opening Your Class

KEY ELEMENT	EXAMPLES
Introduce Content	This Automotive Electrical & Engine Performance 8th edition provides complete coverage of automotive areas pertaining vehicle electrical systems and engine performance. It correlates material to task lists specified by ASE and ASEEducation (NATEF) and emphasizes a problem-solving approach. Chapter features include Tech Tips, Frequently Asked Questions, Case Studies, Videos, and Animations that are listed in this Lesson Plan. This Lesson Plan also references ASEEducation (NATEF) Task Sheets available from Jim's web site.
Motivate Learners	Explain how the knowledge of how something works translates into the ability to use that knowledge to figure why the engine does not work correctly and how this saves diagnosis time, which translates into more money.
State the learning objectives for the chapter or course you are about to cover and explain this is what they should be able to do as a result of attending this session or class.	 Explain learning objectives to students as listed below: Discuss how O2S sensors work. List the methods that can be used to test oxygen sensor. Describe the symptoms of a failed OS2 sensor. Explain the operation of wide-band oxygen sensors. Compare dual cell wide-band sensors to single cell wide-band sensors. Describe wide-band oxygen pattern failures and interpret oxygen sensor-related diagnostic trouble codes.
Establish the Mood or Climate	Provide a WELCOME, Avoid put downs and bad jokes.
Complete Essentials Clarify and Establish Knowledge Base	Restrooms, breaks, registration, tests, etc. Do a round robin of the class by going around the room and having each student give their backgrounds, years of experience, family, hobbies, career goals, or anything they want to share.

NOTE: This lesson plan is based on Automotive Electrical & Engine Performance 8th Edition Chapter Images found on Jim's web site @ <u>www.jameshalderman.com</u> DOWNLOAD Chapter 35 Chapter Images: From http://www.jameshalderman.com/books_a8.html#anchor2

ICONS	Ch35 OXYGEN SESNORS
	1. SLIDE 1 CH35 OXYGEN SESNORS
	Check for ADDITIONAL VIDEOS & ANIMATIONS @ <u>http://www.jameshalderman.com/</u> WEB SITE IS CONSTANTLY UPDATED
	<u>Videos</u>
	At the beginning of this class, you can download the crossword puzzle & Word Search from Jim's web site to familiarize your class with terms in this chapter & then discuss them, see below:
	HTTP://WWW.JAMESHALDERMAN.COM/BOOKS_A8.H TML#ANCHOR2
	DOWNLOAD
	CROSSWORD PUZZLE (MICROSOFT WORD) (PDF) WORD SEARCH PUZZLE (MICROSOFT WORD) (PDF
	2. SLIDE 2 EXPLAIN Figure 35-1 Many oxygen sensors are located in exhaust manifold near its outlet so that the sensor can detect the presence or absence of oxygen in the exhaust stream for all cylinders that feed into the manifold.
DEMO	DEMONSTRATION: PUT AN OBD-II VEHICLE ON A LIFT AND SHOW STUDENTS THE OXYGEN SENSORS. POINT OUT AND EXPLAIN UPSTREAM AND DOWNSTREAM SENSORS TO THEM.
	DISCUSSION: HAVE THE STUDENTS DISCUSS OXYGEN SENSORS. HOW DO O ₂ SENSORS HELP ACHIEVE CORRECT AIR-FUEL RATIO?
DEMO	DEMONSTRATION: SHOW CONVENTIONAL O2 SENSOR THAT USES ZIRCONIUM DIOXIDE
	 SLIDE 3 EXPLAIN Figure 35-2 (a) exhaust is lean, the output of a Zirconia oxygen sensor is below 450 mV. (b) exhaust is rich, the output of a Zirconia oxygen sensor is above 450 mV.
	4. SLIDE 4 EXPLAIN Figure 35-3 Most conventional Zirconia oxygen sensors and some wide-band oxygen sensors use the cup (finger) type of design.

ICONS	Ch35 OXYGEN SESNORS
QUESTION	 5. SLIDE 5 EXPLAIN Figure 35-4 A typical heated Zirconia oxygen sensor, showing the sensor signal circuit that uses the outer (exhaust) electrode as the negative and the ambient air side electrode as the positive DISCUSSION: HAVE STUDENTS DISCUSS CUTAWAY VIEWS OF OXYGEN SENSORS IN FIGURES 35-2, 35-3, & 35-4. CALL THEIR ATTENTION TO ATMOSPHERE TAG IN FIGURES 35-3 & 35-4. OXYGEN SENSORS HAVE TO "BREATHE" IN ORDER TO WORK.
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT 1-, 2-, 3-, & 4-WIRE OXYGEN SENSORS. WHAT IS SAME ABOUT THESE SENSORS, AND WHAT IS DIFFERENT?
	6. SLIDE 6 EXPLAIN Figure 35-5 The oxygen sensor provides a quick response at the stoichiometric air-fuel ratio of 14.7:1.s
	DEMONSTRATION: USE SCAN TOOL TO SHOW BIAS VOLTAGE. HAVE THEM WATCH DATA STREAM WHEN VEHICLE IS STARTED TO SEE HOW LONG IT TAKES FOR OXYGEN SENSOR TO OVERRIDE BIAS VOLTAGE.
	Dual Cell O2 Sensor Voltage Check (View) (Download)O2 Sensor Volt Check (View) (Download)Test O2 Sensor (View) (Download)Wide Band O2 Sensor (View) (Download)
QUESTION	DISCUSSION: ASK THE STUDENTS TO DISCUSS THE TITANIA OXYGEN SENSOR AND ITS OPERATING CHARACTERISTICS. HOW IS IT DIFFERENT FROM ZIRCONIA SENSOR? DISCUSS FREQUENTLY ASKED QUESTION:
	WHAT HAPPENS TO BIAS VOLTAGE? Some OEMS, such as GM, have PCM apply 450 mv (0.45 v) to O2S signal wire. This voltage is called the bias voltage and represents
	threshold voltage for the transition from rich to lean. Bias voltage is displayed on a scan tool when ignition switch is turned on with engine

ICONS	Ch35 OXYGEN SESNORS
	off. When engine is started, O2S becomes
	warm enough to produce a usable voltage, and
	bias voltage "disappears" as O2S responds to a
	rich and lean mixture. What happens to bias
	voltage that pcm applies to O2S? Voltage from
	O2S simply overcomes very weak voltage
	signal from PCM. This bias voltage is so weak
	that even a 20-megohm impedance DMM
	affects strength enough to cause voltage to
	drop to 426 Mv. Other meters with only 10
	megohms of impedance cause bias voltage to
	read less than 400 mv. Therefore, even though
	O2S voltage is relatively low powered, it is
	more than strong enough to override very weak
	bias voltage the pcm sends to the O2S.
	DISCUSS CASE STUDY: CHEVROLET PICKUP
	TRUCK STORY THE OWNER OF A CHEVROLET
	PICKUP TRUCK COMPLAINED THAT ENGINE
	RAN TERRIBLY. IT WOULD HESITATE AND
	SURGE, YET THERE WERE NO DIAGNOSTIC
	TROUBLE CODES (DTCS). AFTER HOURS OF
	TROUBLESHOOTING, TECHNICIAN
	DISCOVERED, WHILE TALKING TO OWNER,
	THAT PROBLEM STARTED AFTER
	TRANSMISSION HAD BEEN REPAIRED.
	HOWEVER, THE TRANSMISSION SHOP SAID
	THAT PROBLEM WAS AN ENGINE PROBLEM
	AND NOT RELATED TO TRANSMISSION. A
	THOROUGH VISUAL INSPECTION REVEALED
	THAT THE FRONT AND REAR OXYGEN SENSOR
	CONNECTORS HAD BEEN SWITCHED. PCM
	WAS TRYING TO COMPENSATE FOR AN AIR-
	FUEL MIXTURE CONDITION THAT DID NOT
	02S CONNECTORS RESTORED PROPER
	OPERATION OF THE TRUCK.
	SUMMARY:

ICONS	Ch35 OXYGEN SESNORS
	 COMPLAINT—VEHICLE OWNER COMPLAINED THAT PICKUP TRUCK RAN TERRIBLY. CAUSE—DURING A PREVIOUS REPAIR, UPSTREAM AND DOWNSTREAM OXYGEN SENSOR CONNECTORS WERE REVERSED. CORRECTION—CONNECTORS WERE MOVED TO THEIR CORRECT LOCATIONS, WHICH RESTORED PROPER ENGINE OPERATION.
	OPERATION. IT MAY BE NECESSARY TO ACCESS TUNE-UP SPECS & DIAGRAMS TO ACCURATELY IDENTIFY BANK 1 ON DIFFERENT V6 & V8 ENGINES. DISCUSS CASE STUDY: OXYGEN SENSOR IS LYING TO YOU A TECHNICIAN WAS TRYING TO SOLVE A DRIVEABILITY PROBLEM WITH AN OLDER V-6 PASSENGER CAR. CAR IDLED ROUGHLY, HESITATED, AND ACCELERATED POORLY. A THOROUGH VISUAL INSPECTION DID NOT INDICATE PROBLEMS AND THERE WERE NO DIAGNOSTIC TROUBLE CODES STORED. TECHNICIAN CHECKED OXYGEN SENSOR ACTIVITY USING A DMM. VOLTAGE STAYED ABOVE 600 MV MOST OF TIME. IF TECHNICIAN REMOVED A LARGE VACUUM HOSE, OXYGEN SENSOR VOLTAGE WOULD TEMPORARILY DROP TO BELOW 450 MV AND THEN RETURN TO A READING OF OVER 600 MV. REMEMBER: • HIGH 02S READINGS = RICH EXHAUST (LOW 02 CONTENT IN EXHAUST) • LOW 02S READINGS = LEAN EXHAUST (HIGH 02 CONTENT IN THE EXHAUST) AS PART OF A THOROUGH VISUAL INSPECTION, TECHNICIAN REMOVED AND INSPECTED SPARK PLUGS. ALL THE SPARK

ICONS	Ch35 OXYGEN SESNORS
	PLUGS WERE WHITE, INDICATING A LEAN MIXTURE, NOT RICH MIXTURE THAT OXYGEN SENSOR WAS INDICATING. HIGH 02S READING SIGNALED PCM TO REDUCE AMOUNT
	OF FUEL, RESULTING IN AN EXCESSIVELY LEAN OPERATION. AFTER REPLACING
	OXYGEN SENSOR, ENGINE RAN GREAT. BUT
	WHAT KILLED THE OXYGEN SENSOR? THE TECHNICIAN FINALLY LEARNED FROM THE
	OWNER THAT THE HEAD GASKET HAD BEEN
	REPLACED OVER A YEAR AGO. THE SILICATE AND PHOSPHATE ADDITIVES IN THE
	AND PHOSPHATE ADDITIVES IN THE ANTIFREEZE COOLANT HAD COATED OXYGEN
	SENSOR. BECAUSE THE OXYGEN SENSOR
	WAS COATED, OXYGEN CONTENT OF THE EXHAUST COULD NOT BE DETECTED,
	RESULTING IN A FALSE RICH SIGNAL FROM
	THE OXYGEN SENSOR. SUMMARY:
	COMPLAINT—VEHICLE OWNER
	COMPLAINED THAT CAR EQUIPPED WITH A V-6 ENGINE RAN TERRIBLY.
	CAUSE—OXYGEN SENSOR WAS
	CONTAMINATED BY ADDITIVES IN THE
	COOLANT, CAUSED BY A PREVIOUSLY REPAIRED HEAD GASKET FAILURE.
	• CORRECTION—REPLACING OXYGEN
	SENSORS RESTORED PROPER ENGINE OPERATION.
	DEMONSTRATION: SHOW THE TYPICAL
DEMO	LOCATIONS OF OXYGEN SENSORS ON A VEHICLE. SHOW THEM NUMBER 1, NUMBER 2, UPSTREAM, AND DOWNSTREAM SENSORS, IF APPLICABLE.
	FIGURE 35-6 DISCUSS FREQUENTLY ASKED QUESTION:
	WHERE IS HO2S1? OXYGEN SENSORS ARE
	NUMBERED ACCORDING TO THEIR LOCATION

ICONS	Ch35 OXYGEN SESNORS
	IN ENGINE. ON A V-TYPE ENGINE, HEATED
	OXYGEN SENSOR NUMBER 1 (HO2S1) IS
	LOCATED IN THE EXHAUST SYSTEM,
	UPSTREAM OF CATALYTIC CONVERTER, ON
	SIDE OF ENGINE WHERE CYLINDER 1 IS
	LOCATED. • SEE FIGURE 35-6.
	 SLIDE 7 EXPLAIN FIGURE 35–6 Number and label designations for oxygen sensors. Bank 1 is the bank where cylinder 1 is located.
	8. SLIDE 8 EXPLAIN FIGURE 35–7 OBD-II catalytic converter monitor compares signals of upstream and downstream oxygen sensor to determine converter efficiency.
	DISCUSS CASE STUDY: THE MISSING FORD
	A FORD WAS BEING ANALYZED FOR POOR
	ENGINE OPERATION. ENGINE RAN PERFECTLY
	DURING FOLLOWING CONDITIONS.
	1. ENGINE COLD OR OPERATING IN OPEN LOOP
	2. ENGINE AT IDLE
	3. ENGINE OPERATING AT OR NEAR WIDE- OPEN THROTTLE
	After hours of troubleshooting, technician
	determined cause to be a poor ground
	connection for oxygen sensor. The engine ran okay during times when PCM ignored oxygen sensor. Unfortunately, service technician did
	not have a definite plan during diagnostic process and as a result checked and replaced
	many unnecessary parts. An oxygen sensor
	test early in diagnostic procedure would have
	indicated that oxygen (O2S) signal was not
	correct. Poor ground caused oxygen sensor
	voltage level to be too high, indicating to PCM
	that mixture was too rich. PCM then subtracted
	fuel, which caused engine to miss and run

ICONS	Ch35 OXYGEN SESNORS
	roughly as result of the now too lean air fuel
	mixture.
	SUMMARY:
	COMPLAINT—VEHICLE OWNER
	COMPLAINED OF POOR ENGINE
	OPERATION EXCEPT AT IDLE AND AT
	WIDE OPEN THROTTLE CONDITIONS.
	CAUSE—POOR GROUND CONNECTION
	FOR THE OXYGEN SENSOR CAUSE THE
	O2S TO READ INCORRECTLY.
	CORRECTION—GROUND CONNECTION
	WAS CLEANED AND THIS RESTORED
	PROPER ENGINE OPERATION UNDER ALL
	OPERATING CONDITIONS.
	DISCUSSION: HAVE THE STUDENTS DISCUSS
	OPEN-LOOP & CLOSED-LOOP ENGINE
QUESTION	OPERATION. WILL AN ENGINE THAT RUNS WELL
	IN OPEN LOOP ALSO RUN WELL IN CLOSED LOOP?
	DISCUSSION: HAVE STUDENTS TALK ABOUT
	HOW PCM USES THE OXYGEN SENSOR TO TEST
QUESTION	OTHER SYSTEMS. WHAT HAPPENS WITH OTHER SYSTEMS IF A FAULT OCCURS WITH AN OXYGEN
	SENSOR? FIGURE 35-7
	DISCUSSION: HAVE THE STUDENTS DISCUSS
	THE NECESSITY OF INSPECTING AN OLD OXYGEN
	SENSOR. WHAT
QUESTION	CAN BE DETERMINED BY CONDITION OF SENSOR?
	9. SLIDE 9 EXPLAIN Figure 35-8 Testing an oxygen sensor using a DMM set on DC volts. With the engine operating in closed loop, the oxygen voltage should read over 800 mV and lower than 200 mV and be constantly fluctuating.
	EXPLAIN TECH TIP: <i>Do Not Solder Oxygen Sensor</i>
J	<i>Wires.</i> Oxygen sensors must have outside oxygen
	to compare with oxygen content in exhaust. Most
	oxygen sensors breathe through signal wire and, if
	soldered, blocks flow of outside air to sensor. If a
	replacement oxygen sensor is used, always use

ICONS	Ch35 OXYGEN SESNORS
	factory replacement, using original connectors or a
	crimp and-seal connector that seals out any
	moisture and still allows air to flow through
	connector.
	DEMONSTRATION: SHOW EXAMPLES OF
DEMO	OXYGEN SENSORS THAT HAVE FAILED DUE TO
	OTHER PROBLEMS WITH THE VEHICLE. ASK THEM
	TO IDENTIFY CAUSE OF FAILURE. WORK WITH STUDENTS TO TEST AN OXYGEN SENSOR WITH
	DMM. FIGURE 35-8
	DISCUSSION: HAVE THE STUDENTS DISCUSS
	THE CONDITIONS THAT CAN CAUSE A FALSE
QUESTION	<u>RICH INDICATION</u> BY THE OXYGEN SENSOR.
	COULD ANYTHING ELSE BE CAUSE OF A FALSE INDICATION?
DEMO	DEMONSTRATION: SHOW EXAMPLES OF OXYGEN SENSORS THAT HAVE FAILED. TRY TO
DEMO	SHOW EXAMPLES THAT DEMONSTRATE THE
	SPECIFIC FAILURE CAUSES
	DISCUSSION: HAVE THE STUDENTS DISCUSS
	THE CONDITIONS THAT CAN CAUSE A FALSE
	LEAN INDICATION BY THE OXYGEN SENSOR.
QUESTION	COULD ANYTHING ELSE BE CAUSE OF A FALSE
	INDICATION?
4	HANDS-ON TASK: HAVE STUDENTS SELECT AND
	MONITOR OXYGEN SENSOR MIN-MAX VOLTAGE
	WITH A DMM. HAVE THEM CHART MINIMUM AND
	MAXIMUM READINGS OBSERVED ON SENSORS
	DURING A RUN CYCLE. GRADE STUDENTS ON
	PROPER OPERATION OF DMM MIN AND MAX FUNCTIONS AS WELL AS THE VOLTAGE READINGS
	OBSERVED. FIGURE 35-8
	DISCUSS FREQUENTLY ASKED QUESTION:
	WHY DOES THE OXYGEN SENSOR VOLTAGE
	READ 5 VOLTS ON MANY CHRYSLER
	VEHICLES? Many Chrysler vehicles apply a 5-
	volt reference to the signal wire of oxygen
	sensor. Purpose of this voltage is to allow PCM

ICONS	Ch35 OXYGEN SESNORS
	to detect if oxygen sensor signal circuit is
	open or grounded.
	IF VOLTAGE ON SIGNAL WIRE IS 4.5
	VOLTS OR MORE, PCM ASSUMES THAT
	THE SENSOR IS OPEN.
	 IF VOLTAGE ON SIGNAL WIRE IS ZERO,
	PCM ASSUMES THAT SENSOR IS
	SHORTED-TO-GROUND. IF EITHER
	CONDITION EXISTS, THE PCM CAN SET A
	DIAGNOSTIC TROUBLE CODE (DTC).
	EXPLAIN TECH TIP: Key On, Engine Off Oxygen
1	Sensor Test
	This test works on GM vehicles and may work on
	others if PCM applies a bias voltage to oxygen
	sensors. Zirconia oxygen sensors become more
	electrically conductive as they get hot. To perform this test, be sure that vehicle has not run for
	several hours.
	STEP 1 Connect a scan tool and get the display
	ready to show oxygen sensor data.
	STEP 2 Key the engine on without starting the
	engine. The heater in the oxygen sensor starts
	heating sensor.
	STEP 3 Observe voltage of oxygen sensor. The
	applied bias voltage of 450 mV should slowly
	decrease for all oxygen sensors as they become
	more electrically conductive as the bias voltage
	flowing to ground.
	STEP 4 A good oxygen sensor should indicate a voltage of <100 mV after three minutes. Any sensor
	that displays a higher than usual voltage or seems
	to stay higher longer than the others could be
	defective or skewed high.
	10. SLIDE 10 EXPLAIN Figure 35-9 Using a digital multimeter to test an oxygen sensor using the MIN/MAX
	record function of the meter.
	1

Image: Strong	ICONS	Ch35 OXYGEN SESNORS
DEMOOXYGEN SENSOR DATA WITH A SCAN TOOL. ASK THEM TO IDENTIFY THE LOCATION OF THE SENSORS TESTED.DISCUSSION:HAVE STUDENTS DISCUSSFREQUENCY GUESTIONAT WHICH AN OXYGEN SENSOR SWITCHES. WHAT HAPPENS IF THE SENSOR SWITCHES TOO SLOWLY?I. SLIDE 11 EXPLAIN Figure 35-10Connecting a handheld digital storage oscilloscope to an oxygen sensor signal wire. Check the instructions for the scope as some require the use of a filter to be installed in the test lead to reduce electromagnetic interference that can affect the oxygen sensor waveform.DEMODEMONSTRATION: SHOW HOW TO USE A SCOPE TO TEST AN OXYGEN SENSOR. HAVE THEM IDENTIFY HIGH AND LOW VOLTAGE READINGS ON SCOPE. FIGURE 35-10, 35-11DEMODEMONSTRATION: SHOW HOW TO USE A SCOPE TO TEST AN OXYGEN SENSOR. HAVE THEM IDENTIFY HIGH AND LOW VOLTAGE READINGS ON SCOPE. FIGURE 35-10, 35-11DEMODEMONSTRATION: SHOW DATA STREAM ON A DOWNSTREAM OXYGEN SENSOR. COMPARE IT TO READING ON AN UPSTREAM SENSOR. PERFORM ALL DEMONSTRATIONS AHEAD OF TIME TO BE SURE THE RESULTS ARE APPROPRIATE FOR THE DEMONSTRATION. DISCUSSION; DISCUSS TESTING DOWNSTREAM OXYGEN SENSOR. WHAT DOES THIS SENSOR REALLY DO?EXPLAIN TECH TIP: Propame Oxygen Sensor Test Adding propane to air inlet of a running engine is an excellent way to check if oxygen sensor is able to react to changes in air-fuel mixture. Follow these		IN <u>CHART 35–1</u> . IS IT POSSIBLE FOR A DEFECTIVE SENSOR TO WORK WELL ENOUGH THAT IT DOESN'T SET A DTC?
 FREQUENCY AT WHICH AN OXYGEN SENSOR SWITCHES. WHAT HAPPENS IF THE SENSOR SWITCHES TOO SLOWLY? SLIDE 11 EXPLAIN Figure 35-10 Connecting a handheld digital storage oscilloscope to an oxygen sensor signal wire. Check the instructions for the scope as some require the use of a filter to be installed in the test lead to reduce electromagnetic interference that can affect the oxygen sensor waveform. DEMO DEMONSTRATION: SHOW HOW TO USE A SCOPE TO TEST AN OXYGEN SENSOR. HAVE THEM IDENTIFY HIGH AND LOW VOLTAGE READINGS ON SCOPE. FIGURE 35-10, 35-11 SLIDE 12 EXPLAIN Figure 35-11 waveform of a good oxygen sensor as displayed on a digital storage oscilloscope (DSO). Note that the maximum reading is above 800 mV and minimum reading is < 200 mV. DEMONSTRATION: SHOW WDATA STREAM ON A DOWNSTREAM OXYGEN SENSOR. COMPARE IT TO READING ON AN UPSTREAM SENSOR. PERFORM ALL DEMONSTRATIONS AHEAD OF TIME TO BE SURE THE RESULTS ARE APPROPRIATE FOR THE DEMONSTRATION. DISCUSSION: DISCUSS TESTING DOWNSTREAM OXYGEN SENSOR, WHAT DOES THIS SENSOR REALLY DO? EXPLAIN TECH TIP: Propane Oxygen Sensor Test Adding propane to air inlet of a running engine is an excellent way to check if oxygen sensor is able to react to changes in airfuel mixture. Follow these 	DEMO	OXYGEN SENSOR DATA WITH A SCAN TOOL . ASK THEM TO IDENTIFY THE LOCATION OF THE SENSORS TESTED.
 handheld digital storage oscilloscope to an oxygen sensor signal wire. Check the instructions for the scope as some require the use of a filter to be installed in the test lead to reduce electromagnetic interference that can affect the oxygen sensor waveform. DEMO DEMONSTRATION: SHOW HOW TO USE A SCOPE TO TEST AN OXYGEN SENSOR. HAVE THEM IDENTIFY HIGH AND LOW VOLTAGE READINGS ON SCOPE. FIGURE 35-10, 35-11 12. SLIDE 12 EXPLAIN Figure 35-11 waveform of a good oxygen sensor as displayed on a digital storage oscilloscope (DSO). Note that the maximum reading is above 800 mV and minimum reading is < 200 mV. DEMONSTRATION: SHOW DATA STREAM ON A DOWNSTREAM OXYGEN SENSOR. COMPARE IT TO READING ON AN UPSTREAM OXYGEN SENSOR. PERFORM ALL DEMONSTRATIONS AHEAD OF TIME TO BE SURE THE RESULTS ARE APPROPRIATE FOR THE DEMONSTRATION. DISCUSSION: DISCUSS TESTING DOWNSTREAM OXYGEN SENSOR. WHAT DOES THIS SENSOR REALLY DO? EXPLAIN TECH TIP: <i>Propane Oxygen Sensor Test</i> Adding propane to air inlet of a running engine is an excellent way to check if oxygen sensor is able to react to changes in air-fuel mixture. Follow these 	QUESTION	FREQUENCY AT WHICH AN OXYGEN SENSOR SWITCHES. WHAT HAPPENS IF THE SENSOR SWITCHES TOO SLOWLY?
DEMOTO TEST AN OXYGEN SENSOR. HAVE THEM IDENTIFY HIGH AND LOW VOLTAGE READINGS ON SCOPE. FIGURE 35-10, 35-11Image: Description12. SLIDE 12 EXPLAIN Figure 35-11 waveform of a good oxygen sensor as displayed on a digital storage oscilloscope (DSO). Note that the maximum reading is above 800 mV and minimum reading is < 200 mV.DEMODEMONSTRATION: SHOW DATA STREAM ON A DOWNSTREAM OXYGEN SENSOR. COMPARE IT TO READING ON AN UPSTREAM SENSOR. PERFORM ALL DEMONSTRATIONS AHEAD OF TIME TO BE SURE THE RESULTS ARE APPROPRIATE FOR THE DEMONSTRATION. DISCUSSION: DISCUSS TESTING DOWNSTREAM OXYGEN SENSOR, what DOES THIS SENSOR REALLY DO?EXPLAIN TECH TIP: Propane Oxygen Sensor Test Adding propane to air inlet of a running engine is an excellent way to check if oxygen sensor is able to react to changes in air-fuel mixture. Follow these		handheld digital storage oscilloscope to an oxygen sensor signal wire. Check the instructions for the scope as some require the use of a filter to be installed in the test lead to reduce electromagnetic interference that can affect the oxygen sensor waveform.
oxygen sensor as displayed on a digital storage oscilloscope (DSO). Note that the maximum reading is above 800 mV and minimum reading is < 200 mV.	DEMO	TO TEST AN OXYGEN SENSOR. HAVE THEM IDENTIFY HIGH AND LOW VOLTAGE READINGS ON
DEMOA DOWNSTREAM OXYGEN SENSOR. COMPARE IT TO READING ON AN UPSTREAM SENSOR. PERFORM ALL DEMONSTRATIONS AHEAD OF TIME TO BE SURE THE RESULTS ARE APPROPRIATE FOR THE DEMONSTRATION. DISCUSSION: DISCUSS TESTING DOWNSTREAM OXYGEN SENSOR. WHAT DOES THIS SENSOR REALLY DO?EXPLAIN TECH TIP: Propane Oxygen Sensor Test Adding propane to air inlet of a running engine is an excellent way to check if oxygen sensor is able to 		oxygen sensor as displayed on a <u>digital storage</u> oscilloscope (DSO). Note that the maximum reading is above 800 mV and minimum reading is < 200 mV.
DOWNSTREAM OXYGEN SENSOR. WHAT DOES THIS SENSOR REALLY DO?EXPLAIN TECH TIP: Propane Oxygen Sensor Test Adding propane to air inlet of a running engine is an excellent way to check if oxygen sensor is able to react to changes in air-fuel mixture. Follow these	DEMO	A DOWNSTREAM OXYGEN SENSOR. COMPARE IT TO READING ON AN UPSTREAM SENSOR. PERFORM ALL DEMONSTRATIONS AHEAD OF TIME TO BE SURE THE RESULTS ARE APPROPRIATE FOR
Adding propane to air inlet of a running engine is an excellent way to check if oxygen sensor is able to react to changes in air-fuel mixture. Follow these		DOWNSTREAM OXYGEN SENSOR . WHAT DOES THIS SENSOR REALLY DO?
· · · · · · · · · · · · · · · · · · ·	3	Adding propane to air inlet of a running engine is an excellent way to check if oxygen sensor is able to react to changes in air-fuel mixture. Follow these

ICONS	Ch35 OXYGEN SESNORS
	 Connect a digital storage oscilloscope to the oxygen sensor signal wire. Start and operate the engine until it reaches operating temperature and is in closed-loop fuel control. While watching the scope display, add some propane to air inlet. The scope display should read full rich (over 800 mV). Shut off propane. The waveform should drop to <200 mV (0.2 V). Quickly add some propane while the oxygen
	sensor is reading low and watch for a rapid transition to rich. The transition should occur in less than 100 milliseconds (ms).
	13. SLIDE 13 EXPLAIN Figure 35-12 The post catalytic converter oxygen sensor should display very little activity if the catalytic converter is efficient
	DISCUSSION: STUDY FIGURE 35–12 COMPARE NORMAL (GOOD CONVERTER) & ABNORMAL (BAD CONVERTER) AFTER CONVERTER OXYGEN SENSOR READINGS. COULD THIS TEST BE USED TO DIAGNOSE OTHER PROBLEMS?
	14. SLIDE 14 EXPLAIN FIGURE 35–13 conventional zirconia oxygen sensor can only reset to exhaust mixtures that are richer or leaner than14.7:1 (lambda 1.00).
	DISCUSSION: EXPLAIN OPERATION OF CONVENTIONAL OXYGEN SENSORS ON 14.7:1 AIR- FUEL RATIO. IS THIS RATIO ACCURATE ENOUGH? FIGURE 35-13
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT WIDE-BAND OXYGEN SENSORS. WHAT DOES "WIDE-BAND" MEAN?
	15. SLIDE 15 EXPLAIN FIGURE 35–14 planar design zirconia oxygen sensor places all of the elements together, which allows the sensor to reach operating temperature quickly.
	DISCUSSION: DISCUSS PLANAR DESIGN OF WIDE-BAND OXYGEN SENSOR. WHAT IS MAIN ADVANTAGE OF THIS DESIGN? FIGURE 35-14

ICONS	Ch35 OXYGEN SESNORS
	16. SLIDE 16 EXPLAIN FIGURE 35-15 reference electrodes are shared by Nernst cell and the pump cell
****	NOTE; THE WIDE BAND OXYGEN SENSOR IS ALSO REFERRED TO AS ASN AIR FUEL RATIO SENSOR OR AFR
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT ULEV AND SULEV EMISSIONS SYSTEMS. WHY DO THESE EMISSIONS RATINGS REQUIRE MORE PRECISE FUEL MANAGEMENT STRATEGIES? DISCUSS FREQUENTLY ASKED QUESTION: HOW QUICKLY CAN A WIDE-BAND OXYGEN
	SENSOR ACHIEVE CLOSED LOOP? IN A TOYOTA HIGHLANDER HYBRID-ELECTRIC VEHICLE, THE OPERATION OF GASOLINE ENGINE IS
	DELAYED FOR A SHORT TIME WHEN VEHICLE IS FIRST DRIVEN. DURING THIS TIME OF ELECTRIC OPERATION, OXYGEN SENSOR HEATERS ARE TURNED ON IN READINESS FOR
	GASOLINE ENGINE STARTING. THE GASOLINE ENGINE OFTEN ACHIEVES CLOSED-LOOP OPERATION DURING CRANKING BECAUSE
	OXYGEN SENSORS ARE FULLY WARM AND READY TO GO AT THE SAME TIME THE ENGINE IS STARTED. HAVING THE GASOLINE ENGINE
	ACHIEVE CLOSED LOOP QUICKLY, ALLOWS IT TO MEET STRINGENT SULEV STANDARDS.
	DISCUSSION: DISCUSS DUAL CELL, PLANAR- TYPE, WIDE-BAND OXYGEN SENSOR. IN WHAT MAJOR WAY DOES CONSTRUCTION OF THIS SENSOR DIFFER FROM THAT OF A CONVENTIONAL
	 SENSOR? 17. SLIDE 17 EXPLAIN Figure 35-16 When exhaust is rich, PCM applies a negative current into the pump cell. 18. SLIDE 18 EXPLAIN Figure 35-17 When exhaust is lean, PCM applies a positive current into pump cell.

ICONS	Ch35 OXYGEN SESNORS
QUESTION	DISCUSSION: ASK THE STUDENTS TO DISCUSS
	STOICHIOMETRIC READING IN THE EXHAUST
	AND FACT THAT THE OXYGEN SENSOR CALCULATES
	THIS AIR-FUEL RATIO AT 14.7:1. FIGURE 35-16
	DISCUSSION: ASK THE STUDENTS TO DISCUSS THE NUMBER OF WIRES NEEDED FOR AN
	OXYGEN SENSOR TO OPERATE. THEY CAN USE
	WIRING DIAGRAMS OF SINGLE-, THREE-, FOUR-,
	FIVE-, OR SIX-WIRE SENSORS.
	DISCUSSION: ASK STUDENTS TO LOOK AT
	CHART 35–2. WHAT IS NOTICEABLE ABOUT
	FACTORY AND GENERIC SETTINGS? POINT OUT
	DIRECT CORRELATION BETWEEN THE VOLTAGE READINGS IN FACTORY & GENERIC SETTINGS.
	CHART 35-2.
	DISCUSSION: HAVE THE STUDENTS DISCUSS
	STEPS FOR TESTING A WIDE-BAND OXYGEN
	SENSOR. WHY IS IT NECESSARY TO CHECK
	SERVICE INFORMATION FIRST?
	19. SLIDE 19 EXPLAIN Figure 35-18 Testing a dual cell
	wide-band oxygen sensor can be done using a voltmeter
n	or a scope. Meter reading is attached to Nernst cell and should read stoichiometric (450 mV) at all times. The
	scope is showing activity to pump cell with commands
DEMO	from PCM to keep Nernst cell at 14.7:1 air-fuel ratio.
	DEMONSTRATION: IF AVAILABLE, SHOW
	STUDENTS DATA STREAM READINGS USING FACTORY SCAN TOOL AND GENERIC SCAN TOOL.
	HAVE THEM OBSERVE DIFFERENCE IN READINGS,
	IF THEY ARE DIFFERENT. FIGURE 35-18
	EXPLAIN TO WHAT A BREAKOUT BOX IS.
	ASK THEM TO DECIDE WHETHER A
	BREAKOUT BOX WOULD BE BENEFICIAL IN
	TESTING DUAL CELL WIDE-BAND OXYGEN
	SENSOR SHOWN IN FIGURE 35–18.
	20. SLIDE 20 EXPLAIN Figure 35-19 single cell wide-
	band oxygen sensor has 4 wires with two for 4 heater and two for the sensor itself. The voltage applied to 4 sensor
	two for the sensor itself. The voltage applied to 4 sensor is $0.4 \text{ V} (3.3 - 2.9 = 0.4)$ across the two leads of 4 sensor

ICONS	Ch35 OXYGEN SESNORS
	DISCUSSION: HAVE THE STUDENTS DISCUSS SINGLE CELL WIDEBAND OXYGEN SENSORS. HOW ARE THEY SIMILAR TO OTHER SENSORS? FIGURE 35-19
	21. SLIDE 21 EXPLAIN FIGURE 35–20 A scan tool can display various voltages, but often shows 3.3 V because the PCM is controlling the sensor through applying a low current to the sensor to achieve balance.
	SAFETY DISCUSS IMPORTANCE OF USING PROPER TERMINALS WHEN TESTING ANY SENSOR, ESPECIALLY <u>WHEN BACK-PROBING</u> <u>CONNECTORS</u> . EXPLAIN THAT <u>PIERCING</u> <u>WIRES</u> THAT WILL BE EXPOSED TO ELEMENTS IS
QUESTION	NOT AN ACCEPTED TESTING PROCEDURE. DISCUSSION: HAVE THE STUDENTS DISCUSS FACT THAT A WIDE-BAND OXYGEN SENSOR CAN CAUSE AN ENGINE TO OPERATE EXTREMELY LEAN, BUT STILL FAIL TO TRIGGER A DTC. WHY MIGHT UNPLUGGING A SENSOR CAUSE THE ENGINE TO OPERATE CORRECTLY?
Education Foundation	ASEEDUCATION TASK:INSPECT AND TEST OXYGEN O ₂ SENSOR USING GMM)/(DSO); PERFORM NECESSARY ACTION.
Education Foundation	ASEEDUCATION TASK INSPECT AND TEST WIDE-BAND OXYGEN O2 SENSOR USING GMM)/(DSO); PERFORM NECESSARY ACTION.