Automotive Electrical & Engine Performance 8/E Chapter 34 MASS AIR FLOW SENSOR

Opening Your Class

KEY ELEMENT	EXAMPLES
Introduce Content	This Automotive Electrical & Engine Performance 8th edition provides complete coverage of automotive areas pertaining vehicle electrical systems and engine performance. It correlates material to task lists specified by ASE and ASEEducation (NATEF) and emphasizes a problem-solving approach. Chapter features include Tech Tips, Frequently Asked Questions, Case Studies, Videos, and Animations that are listed in this Lesson Plan. This Lesson Plan also references ASEEducation (NATEF) Task Sheets available from Jim's web site.
Motivate Learners	Explain how the knowledge of how something works translates into the ability to use that knowledge to figure why the engine does not work correctly and how this saves diagnosis time, which translates into more money.
State the learning objectives for the chapter or course you are about to cover and explain this is what they should be able to do as a result of attending this session or class.	 Explain learning objectives to students as listed below: 1. Discuss how MAF sensors work. 2. List the methods that can be used to test MAF sensors. 3. Describe the symptoms of a failed MAF sensor. This chapter will help prepare for Engine Repair (A8) ASE Certification test content area "E" (Computerized Engine Controls Diagnosis and Repair).
Establish the Mood or Climate	Provide a WELCOME, Avoid put downs and bad jokes.
Complete Essentials	Restrooms, breaks, registration, tests, etc.
Clarify and Establish Knowledge Base	Do a round robin of the class by going around the room and having each student give their backgrounds, years of experience, family, hobbies, career goals, or anything they want to share.

NOTE: This lesson plan is based on Automotive Electrical & Engine Performance 8th Edition Chapter Images found on Jim's web site @ <u>www.jameshalderman.com</u> DOWNLOAD Chapter 34 Chapter Images: From

http://www.jameshalderman.com/books_a8.html#anchor2

ICONS	Ch34 MASS AIR FLOW SENSOR
	1. SLIDE 1 CH34 MASS AIR FLOW SENSOR
	Check for ADDITIONAL VIDEOS & ANIMATIONS @ http://www.jameshalderman.com/
	WEB SITE IS CONSTANTLY UPDATED
	<u>Videos</u>
•••••	At the beginning of this class, you can download the crossword puzzle & Word Search from Jim's web site to familiarize your class with terms in this chapter & then discuss them, see below:
	HTTP://WWW.JAMESHALDERMAN.COM/BOOKS_A8.H
	TML#ANCHOR2
V	DOWNLOAD CROSSWORD PUZZLE (MICROSOFT WORD) (PDF)
	WORD SEARCH PUZZLE (MICROSOFT WORD) (PDF
	2. SLIDE 2 EXPLAIN FIGURE 34–1 This five-wire mass air flow sensor consists of a metal foil sensing unit, an intake air temperature (IAT) sensor, and electronic module.
	3. SLIDE 3 EXPLAIN FIGURE 34–2 The sensing wire in a typical hot wire mass air flow sensor
	DEMONSTRATION: SHOW STUDENTS A VANE
DEMO	AIRFLOW SENSOR. POINT OUT VANE, &, IF COVER IS REMOVED, LINK TO POTENTIOMETER
	DISCUSSION: HAVE THE STUDENTS DISCUSS VANE AIRFLOW SENSOR AND HOW IT WORKS. WHAT MIGHT HAPPEN IF THE SENSOR DIDN'T HAVE A DAMPENING CHAMBER DESIGNED INTO IT?
	DISCUSS CASE STUDY: DIRTY MAF SENSOR STORY
	THE OWNER OF A BUICK PARK AVENUE
	EQUIPPED WITH A 3,800 V-6 ENGINE
	COMPLAINED THAT ENGINE WOULD HESITATE

ICONS	Ch34 MASS AIR FLOW SENSOR
	DURING ACCELERATION, SHOWED LACK OF POWER, AND SEEMED TO SURGE OR MISS AT TIMES. A VISUAL INSPECTION FOUND EVERYTHING TO BE LIKE NEW, INCLUDING A NEW AIR FILTER. THERE WERE NO DTCS. A LOOK AT SCAN DATA SHOWED AIRFLOW TO BE WITHIN RECOMMENDED 3 TO 7 GRAMS PER SECOND. A CHECK OF THE FREQUENCY OUTPUT SHOWED THE PROBLEM. IDLE FREQUENCY · 2.177 KHZ (2,177 HZ) NORMAL FREQUENCY AT IDLE SPEED SHOULD BE 2.37 TO 2.52 KHZ. CLEANING THE HOT WIRE OF THE MAF SENSOR RESTORED PROPER OPERATION. THE SENSOR WIRE WAS COVERED WITH WHAT LOOKED LIKE FINE FIBERS, POSSIBLY FROM REPLACEMENT AIR FILTER. SUMMARY: • COMPLAINT—CUSTOMER STATED THAT THE ENGINE HESITATED WHEN ACCELERATING. • CAUSE—TESTS CONFIRMED THAT MAF SENSOR WAS OPERATING CORRECTLY, BUT THE FREQUENCY OUTPUT AT IDLE WAS NOT WITHIN NORMAL RANGE. • CORRECTION—CLEANING THE MAF SENSOR RESTORED PROPER OPERATION OF THE SENSOR AND THE ENGINE NOW ACCELERATES NORMALLY
	DISCUSS CHART 34-1 CHART SHOWING THE AMOUNT OF AIR ENTERING THE ENGINE IN GRAMS PER SECOND COMPARED TO THE SENSOR OUTPUT VOLTAGE. <u>DISCUSSION:</u> HAVE THE STUDENTS TALK ABOUT THE DIFFERENCE IN VOLTAGE READINGS AND GRAMS PER SECOND LISTED IN THE CHART 34-1.

ICONS	Ch34 MASS AIR FLOW SENSOR
	WHY SHOULD OEM SPECIFICATIONS ALWAYS
	BE USED IN DIAGNOSING MASS AIR FLOW
	SENSORS?
	DISCUSS FREQUENTLY ASKED QUESTION: WHAT IS MEANT BY A "HIGH-AUTHORITY
	SENSOR"?
	A high-authority sensor is a sensor that has a
	major influence over the amount of fuel being
	delivered to the engine. For example, at engine
	start-up, the engine coolant temperature (ECT)
	sensor is a high-authority sensor and oxygen
	sensor (02S) is a low-authority sensor.
	However, as the engine reaches operating
	temperature, oxygen sensor becomes a high-
	authority sensor and can greatly affect the
	amount of fuel being supplied to engine.
	Reaches closed-loop operation)
	4. SLIDE 4 EXPLAIN FIGURE 34–3 Karman Vortex air
	flow sensor uses a triangle-shaped rod to create vortexes as
	air flows through sensor. The electronics in sensor itself
	converts these vortexes to a digital square wave signal.
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT
Sec. 8	KARMAN VORTEX SENSORS. WHAT IS DESIGN
QUESTION	FACTOR THAT MAKES THEM OPERATE? DISCUSS ULTRASONIC AND THE PRESSURE-TYPE KARMAN
	VORTEX SENSORS. WHAT IS THE DIFFERENCE IN
	THEIR OPERATION? WHAT IS SIMILAR IN THEIR
	OPERATION? FIGURE 34-3
	DISCUSS FREQUENTLY ASKED QUESTION:
	WHAT IS FALSE AIR? AIRFLOW SENSORS AND
	MASS AIRFLOW (MAF) SENSORS ARE
	DESIGNED TO MEASURE ALL THE AIR
	ENTERING ENGINE. IF AN AIR INLET HOSE
	WAS LOOSE OR HAD A HOLE, EXTRA AIR
	COULD ENTER ENGINE WITHOUT BEING
	MEASURED. THIS EXTRA AIR IS OFTEN
	CALLED FALSE AIR. • SEE FIGURE 34-4.

ICONS	Ch34 MASS AIR FLOW SENSOR
	NOTE: IF THE ENGINE RUNS WELL IN
	REVERSE, YET RUNS TERRIBLE IN ANY FORWARD GEAR, CAREFULLY LOOK AT INLET
	HOSE FOR AIR LEAKS THAT OPEN WHEN
	ENGINE TORQUE MOVES THE ENGINE
	SLIGHTLY ON ITS MOUNTS.
	5. SLIDE 5 EXPLAIN FIGURE 34–4 Carefully check hose between MAF sensor and throttle plate for cracks or splits that could create extra (false) air into engine that is not measured by MAF sensor.
	DEMONSTRATION: SHOW EXAMPLES OF HOT-
DEMO	FILM SENSORS. DISCUSS HOW THERMISTOR IS USED TO MEASURE AIR TEMPERATURE. THEN SHOW STUDENTS A HOT-WIRE SENSOR. DISCUSS
	PURPOSE OF BURN-OFF CIRCUIT.
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT TYPES OF MASS AIRFLOW SENSORS. HOW ARE HOT-FILM AND HOT-WIRE SENSORS SIMILAR? ARE THERE DIFFERENCES?
	DISCUSSION: HAVE THE STUDENTS DISCUSS THE RESISTANCE OF THE HOT WIRE. DOES IT STAY THE SAME OR CHANGE AS AIR MOVES OVER IT?
	6. SLIDE 6 EXPLAIN FIGURE 34–5 scope display showing a normal Chevrolet Equinox MAF sensor at idle speed. the frequency is 2,600 Hertz (2.6kHz).
	ELECTRONIC PARTS, SENSOR WIRES, & THERMISTORS ARE VERY SENSITIVE TO IMPACT AND PROBING. BE CAREFUL NOT TO DROP THESE PARTS OR PROBE THEM
	WITH SCREWDRIVERS OR OTHER TOOLS.
	DISCUSSION: HAVE STUDENTS DISCUSS HIGH-
	AUTHORITY & LOW-AUTHORITY SENSORS.
QUESTION	CAN SAME SENSOR BE BOTH HIGH AND LOW?
	HAVE STUDENTS EXPLAIN THEIR RESPONSES. CRACKED OR LOOSE AIR INLET TUBE, OR
	SNORKEL, CAN ADMIT UNMETERED (FALSE)
	AIR & CAUSE DRIVEABILITY PROBLEMS.
	PCM CALCULATES FUEL INJECTOR PULSE

ICONS	Ch34 MASS AIR FLOW SENSOR
	WIDTH BASED ON MASS AIR FLOW
	READING. ANY LEAKS WILL GIVE FALSE
	READINGS.
	DISCUSSION: HAVE THE STUDENTS TALK ABOUT
	DIFFERENT WAYS OF TESTING MAFS. IS A
	TAP TEST RESULT ALWAYS ACCURATE?
	DISCUSSION: HAVE THE STUDENTS DISCUSS
	MAF SENSOR CONTAMINATION. IS IT
QUESTION	POSSIBLE TO CLEAN A CONTAMINATED MAF SENSOR?
	EXPLAIN TECH TIP: <i>The Unplug It Test:</i> If a sensor
7	is defective, yet produces a signal to the computer,
	computer often accepts the reading and makes
	required changes in fuel delivery and spark
	advance. If, however, sensor is not reading
	correctly, the computer processes this wrong
	information and performs an action, assuming that
	information being supplied is accurate. "If in doubt,
	take it out." If engine operates better with a sensor
	unplugged, then suspect that the sensor is
	defective. A sensor that is not supplying correct information is said to be skewed. The computer
	does not set a DTC this condition because
	computer can often not detect that sensor is
	supplying wrong information.
	DEMONSTRATION: SHOW DATA STREAM
DEMO	READINGS ON A PROPERLY OPERATING
	MAF SENSOR.
	HANDS-ON TASK: USING A SCAN TOOL HAVE
	THE STUDENTS ACCESS THE MAF SENSOR DATA
	STREAM.
	ON-VEHICLE ASEEDUCATION TASK: INSPECT
	AND TEST MAF SENSOR USING A GMM)/(DSO);
-0-9	PERFORM NEEDED ACTION.
Education Foundation	